SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension

نویسندگان

  • Na Li
  • Jie Zhang
  • Xuefang Yan
  • Chen Zhang
  • Hui Liu
  • Xiaolan Shan
  • Jingyuan Li
  • Yi Yang
  • Chengmin Huang
  • Peng Zhang
  • Yun Zhang
  • Peili Bu
چکیده

Renal fibrosis participates in the progression of hypertension-induced kidney injury. The effect of SIRT3, a member of the NAD+-dependent deacetylase family, in hypertensive nephropathy remains unclear. In this study, we found that SIRT3 was reduced after angiotensin II (AngII) treatment both in vivo and in vitro. Furthermore, SIRT3-knockout mice aggravated hypertension-induced renal dysfunction and renal fibrosis via chronic AngII infusion (2000 ng/kg per minute for 42 days). On the contrary, SIRT3-overexpression mice attenuated AngII-induced kidney injury compared with wild-type mice. Remarkably, a co-localization of SIRT3 and KLF15, a kidney-enriched nuclear transcription factor, led to SIRT3 directly deacetylating KLF15, followed by decreased expression of fibronectin and collagen type IV in cultured MPC-5 podocytes. In addition, honokiol (HKL), a major bioactive compound isolated from Magnolia officinalis (Houpo), suppressed AngII-induced renal fibrosis through activating SIRT3-KLF15 signaling. Taken together, our findings implicate that a novel SIRT3-KLF15 signaling may prevent kidney injury from hypertension and HKL can act as a SIRT3-KLF15 signaling activator to protect against hypertensive nephropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling

Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and t...

متن کامل

Protective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats

sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...

متن کامل

Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury

Acute kidney injury (AKI) is a rapid loss of kidney function characterized by damage to renal tubular cells driven by mitochondrial dysregulation and oxidative stress. Here, we used a murine caecal ligation and puncture (CLP) model of sepsis-induced AKI to study the role of sirtuin 3 (SIRT3), a NAD(+) dependent deacetylase critical for the maintenance of mitochondrial viability, in AKI-related ...

متن کامل

Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury.

Acute kidney injury (AKI) is a public health concern with an annual mortality rate that exceeds those of breast and prostate cancer, heart failure, and diabetes combined. Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology; however, the pathways that mediate these events are poorly defined. Here, using a murine cisplatin-induced AKI model, we determined that both o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017